Digital Physics

Post Reply
User avatar
Pigeon
Posts: 18061
Joined: Thu Mar 31, 2011 3:00 pm

Digital Physics

Post by Pigeon » Wed Mar 28, 2012 2:11 am

Digital physics

In physics and cosmology, digital physics is a collection of theoretical perspectives based on the premise that the universe is, at heart, describable by information, and is therefore computable. Therefore, the universe can be conceived as either the output of a computer program or as a vast, digital computation device (or, at least, mathematically isomorphic to such a device).

Digital physics is grounded in one or more of the following hypotheses; the hypothesis are listed in order of increasing strength. The universe, or reality, is:

* essentially informational (although not every informational ontology needs to be digital);
* essentially computable;
* can be described digitally;
* in essence digital
* itself a computer;
* the output of a simulated reality exercise.

Overview

Digital physics suggests that there exists, at least in principle, a program for a universal computer which computes the evolution of the universe. The computer could be, for example, a huge cellular automaton (Zuse 1967), or a universal Turing machine, as suggested by Schmidhuber (1997), who pointed out that there exists a very short program that can compute all possible computable universes in an asymptotically optimal way.

Some try to identify single physical particles with simple bits. For example, if one particle, such as an electron, is switching from one quantum state to another, it may be the same as if a bit is changed from one value (0, say) to the other (1). A single bit suffices to describe a single quantum switch of a given particle. As the universe appears to be composed of elementary particles whose behavior can be completely described by the quantum switches they undergo, that implies that the universe as a whole can be described by bits. Every state is information, and every change of state is a change in information (requiring the manipulation of one or more bits). Setting aside dark matter and dark energy, which are poorly understood at present, the known universe consists of about 1080 protons and the same number of electrons. Hence, the universe could be simulated by a computer capable of storing and manipulating about 1090 bits. If such a simulation is indeed the case, then hypercomputation would be impossible.

Loop quantum gravity could lend support to digital physics, in that it assumes space-time is quantized. Paola Zizzi has formulated a realization of this concept in what has come to be called "computational loop quantum gravity", or CLQG

Link


Post Reply