Space buoys

UFOs have a separate forum.
Post Reply
User avatar
Pigeon
Posts: 18064
Joined: Thu Mar 31, 2011 3:00 pm

Space buoys

Post by Pigeon » Thu Nov 29, 2012 4:26 pm

First some Earth base navigation systems...

Image VOR Image VOR/DME Image VORTAC

VHF omnidirectional radio range (VOR), is a type of short-range radio navigation system for aircraft, enabling aircraft to determine their position and stay on course by receiving radio signals transmitted by a network of fixed ground radio beacons, with a receiver unit. It uses radio frequencies in the very high frequency (VHF) band from 108 to 117.95 MHz.

A VOR ground station sends out a master signal, and a highly directional second signal that varies in phase 30 times a second compared to the master. This signal is timed so that the phase varies as the secondary antenna spins, such that when the antenna is 90 degrees from north, the signal is 90 degrees out of phase of the master. By comparing the phase of the secondary signal to the master, the angle (bearing) to the station can be determined.

This line of position is called the "radial" from the VOR. The intersection of two radials from different VOR stations on a chart provides the position of the aircraft. VOR stations are fairly short range, the signals have a range of about 200 miles.

VOR stations broadcast a VHF radio composite signal including the station's identifier, voice (if equipped), and navigation signal. The identifier is typically a two- or three-letter string in Morse code. The voice signal, if used, is usually the station name, in-flight recorded advisories, or live flight service broadcasts.

In many cases, VOR stations have co-located Distance measuring equipment (DME) or military Tactical Air Navigation (TACAN) — the latter includes both the DME distance feature and a separate TACAN azimuth feature that provides military pilots data similar to the civilian VOR. A co-located VOR and TACAN beacon is called a VORTAC. A VOR co-located only with DME is called a VOR-DME. A VOR radial with a DME distance allows a one-station position fix. Both VOR-DMEs and TACANs share the same DME system.


User avatar
Pigeon
Posts: 18064
Joined: Thu Mar 31, 2011 3:00 pm

Re: Space buoys

Post by Pigeon » Thu Nov 29, 2012 4:28 pm


The Global Positioning System (GPS) is a space-based satellite navigation system that provides location and time information in all weather, anywhere on or near the Earth, where there is an unobstructed line of sight to four or more GPS satellites. It is maintained by the United States government and is freely accessible to anyone with a GPS receiver.

In addition to GPS, other systems are in use or under development. The Russian GLObal NAvigation Satellite System (GLONASS) was in use by only the Russian military, until it was made fully available to civilians in 2007. There are also the planned European Union Galileo positioning system, Chinese Compass navigation system, and Indian Regional Navigational Satellite System.

A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high above the Earth. Each satellite continually transmits messages that include
  • the time the message was transmitted
  • satellite position at time of message transmission
The receiver uses the messages it receives to determine the transit time of each message and computes the distance to each satellite using the speed of light. Each of these distances and satellites' locations define a sphere. The receiver is on the surface of each of these spheres when the distances and the satellites' locations are correct. These distances and satellites' locations are used to compute the location of the receiver using the navigation equations. This location is then displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included. Many GPS units show derived information such as direction and speed, calculated from position changes.

In typical GPS operation, four or more satellites must be visible to obtain an accurate result. Four sphere surfaces typically do not intersect. Because of this we can say with confidence that when we solve the navigation equations to find an intersection, this solution gives us the position of the receiver along with accurate time thereby eliminating the need for a very large, expensive, and power hungry clock. The very accurately computed time is used only for display or not at all in many GPS applications, which use only the location. A number of applications for GPS do make use of this cheap and highly accurate timing. These include time transfer, traffic signal timing, and synchronization of cell phone base stations.

Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known, a receiver can determine its position using only three satellites. For example, a ship or aircraft may have known elevation. Some GPS receivers may use additional clues or assumptions such as reusing the last known altitude, dead reckoning, inertial navigation, or including information from the vehicle computer, to give a (possibly degraded) position when fewer than four satellites are visible.


User avatar
Pigeon
Posts: 18064
Joined: Thu Mar 31, 2011 3:00 pm

Re: Space buoys

Post by Pigeon » Thu Nov 29, 2012 4:34 pm



The Local Area Augmentation System (LAAS) is an all-weather aircraft landing system based on real-time differential correction of the GPS signal. Local reference receivers located around the airport send data to a central location at the airport. This data is used to formulate a correction message, which is then transmitted to users via a VHF Data Link. A receiver on an aircraft uses this information to correct GPS signals, which then provides a standard ILS-style display to use while flying a precision approach. The International Civil Aviation Organization (ICAO) calls this type of system a Ground Based Augmentation System (GBAS).

Local reference receivers are located around an airport at precisely surveyed locations. The signal received from the GPS constellation is used to calculate the position of the LAAS ground station, which is then compared to its precisely surveyed position. This data is used to formulate a correction message which is transmitted to users via a VHF data link. A receiver on the aircraft uses this information to correct the GPS signals it receives. This information is used to create an ILS-type display for aircraft approach and landing purposes.

Honeywell’s CAT I system provides precision approach service within a radius of 23 NM surrounding a single airport. LAAS mitigates GPS threats in the Local Area to a much greater accuracy than WAAS and therefore provides a higher level of service not attainable by WAAS. LAAS's VHF uplink signal is currently slated to share the frequency band from 108 MHz to 118 MHz with existing ILS localizer and VOR navigational aids. LAAS utilizes a Time Division Multiple Access (TDMA) technology in servicing the entire airport with a single frequency allocation.


The current Non-Fed LAAS is capable of achieving a Category I ILS accuracy of 16 m laterally and 4 m vertically. The goal of the LAAS program is to provide Category III ILS capability.


User avatar
Pigeon
Posts: 18064
Joined: Thu Mar 31, 2011 3:00 pm

Re: Space buoys

Post by Pigeon » Thu Nov 29, 2012 4:39 pm

The Wide Area Augmentation System (WAAS) is an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning System (GPS), with the goal of improving its accuracy, integrity, and availability. Essentially, WAAS is intended to enable aircraft to rely on GPS for all phases of flight, including precision approaches to any airport within its coverage area.

WAAS uses a network of ground-based reference stations, in North America and Hawaii, to measure small variations in the GPS satellites' signals in the western hemisphere. Measurements from the reference stations are routed to master stations, which queue the received Deviation Correction (DC) and send the correction messages to geostationary WAAS satellites in a timely manner (every 5 seconds or better). Those satellites broadcast the correction messages back to Earth, where WAAS-enabled GPS receivers use the corrections while computing their positions to improve accuracy.

The WAAS specification requires it to provide a position accuracy of 7.6 metres (25 ft) or better (for both lateral and vertical measurements), at least 95% of the time. Actual performance measurements of the system at specific locations have shown it typically provides better than 1.0 metre (3 ft 3 in) laterally and 1.5 metres (4 ft 11 in) vertically throughout most of the contiguous United States and large parts of Canada and Alaska. With these results, WAAS is capable of achieving the required Category I precision approach accuracy of 16 metres (52 ft) laterally and 4.0 metres (13.1 ft) vertically.


User avatar
Pigeon
Posts: 18064
Joined: Thu Mar 31, 2011 3:00 pm

Re: Space buoys

Post by Pigeon » Thu Nov 29, 2012 8:26 pm

Aircraft Communications Addressing and Reporting System (ACARS) is a digital datalink system for transmission of short, relatively simple messages between aircraft and ground stations via radio or satellite.

The protocol, which was designed by Aeronautical Radio, Incorporated (ARINC) to replace their VHF voice service and deployed in 1978, uses telex formats. SITA later augmented their worldwide ground data network by adding radio stations to provide ACARS service. Over the next 20 years, ACARS will be superseded by the Aeronautical Telecommunications Network (ATN) protocol for Air Traffic Control communications and by the Internet Protocol for airline communications.


User avatar
Pigeon
Posts: 18064
Joined: Thu Mar 31, 2011 3:00 pm

Re: Space buoys

Post by Pigeon » Thu Dec 13, 2012 3:50 pm

  • Scale model of a pyramid
  • It has a tesla coil embedded in it
  • Tesla coils produce electricity
  • Kirlian photography captures electrical discharge
Link

Image

A land based beacon located in the pyramids.

Post Reply